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Abstract-The equation of motion of a liquid Rowing through a non-circular duct is solved by means of 
integral transformation. As a result of application of some integral transformation the problem of the 
turbulent flow has been brought to the solution of equation of the type describing the laminar flow. The 
solution of this equation is known and frequently cited in the literature of the subject. On the basis of these 
results the analytical expression describing the relation between the ratio Vr/Va and dimensionless velocity 
uju*, of rather general nature can be constructed. To illustrate the method some numerical example is 
included, too. The agreement between the computed velocity field and the experimental data are found to be 

quite satisfactory. 

NOMENCLATURE 

longitudinal component of the velo- 
city ; 
friction velocity (r,ip)+ ; 
dimensionless velocity of the liquid ; 
bulk velocity ; 
molecular kinematic viscosity ; 
turbulent kinematic viscosity; 
density of the liquid; 
pressure gradient in the duct in the 
direction of the flow ; 
friction factor; 
shear stress ; 
distance from the centre line of the 
duct ; 
outer radius of the duct ; 

Y = r,[l - (r/r,)], wall distance; 
Y* = Y(u*jv,), dimensionless wall distance 

parameter ; 

4 hydraulic diameter. 

1. INTRODUCTION 

THE LITERATURE on turbulent flow has increased 
considerably in the course of years. Most of the 
existing analyses for turbulent flow are adequate 

only for a rectilinear duct of circular cross- 
section. Recently some authors have 
endeavoured to determine the turbulent velocity 
field in non-circular cross-section duct on the 
basis of experimental and analytical results for 
ducts of circular cross-section. Among authors 
dealing with this problem we can mention 
Deissler and Taylor [ 11, Buleev [2], Slykov and 
Carevski-Djakin [ 31. 

The method applied by these authors is based 
on the assumption, that a regular contour may 
be transformed into circle in the new 
orthogonal coordinate system by conformal 
mapping. Then utilizing the well-known rela- 
tions for round ducts the turbulent velocity 
fields can be determined. After the inverse 
transformation one obtains the velocity field 
for the given cross-section. The problem solved 
in this manner involves an enormous amount of 
computational work. The course of the com- 
putations presented here follows the hypothetical 
assumption, that the relation between the dimen- 
sionless distance from the wall Y* and the 
dimensionless velocity u/u* is of general nature 
and can be applied to the cross-section remark- 
ably deviating in the shape from a circle. 
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In the present paper, the above assumption 
being taken valid, the dimensionless ratio 
vrjv, was related directly to the dimensionless 
velocity u/u*, thus eliminating the dimensionless 
distance Y* (as it is known the ratio vTivO and 
u/u* are functions of the parameter Y*). 

The ratio v,/v, can be expanded in a power 
series of u/u* making use of the results and an 
analytical expression due to Reichardt. 

Since the ratio vr/vO depends in this case on 
the dimensionless velocity n/u* to be found, the 
differential equation of the motion becomes 
nonlinear. 

This apparent difficulty of nonlinearity can be 
easily avoided by introducing a new function 
determined by means of some integral trans- 
formation. After introducing the new function 
the equation describing a turbulent flow becomes 
linear. The form of this equation of motion is 
identical with that for the laminar flow. 

The function describing a turbulent velocity 
field can be easily obtained by algebraic manipu- 
lations. To illustrate the method a numerical 
example is also included. 

2. FLUID FLOW ANALYSIS 

The flow field for fully established turbulent 
flow is described by the following differential 
equation : 

div [(I + z)grad($)] = &.$. (1) 

The symbols appearing in this and the follow- 
ing equations are contained in the Nomen- 
clature. The liquid properties related to the 
present investigation will be assumed as con- 
stants. Because of its relatively simple mathe- 
matical form Reichardt’s universal velocity 
distribution is considered. It can be written as: 

U 
- = 2.5 In (1 + 0.4 Y*) 
U* 

+ 7.8 _ ,-Y*/ll _ ;_ e-0.33Y* 

> 

; 
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The relation determined by equation (2) as 
well as vT,‘vO( Y*) is presented in Fig. 1, taken from 
[4]. The ratio vT/vO can be related directly to the 
dimensionless velocity u/u*, thus eliminating 
the dimensionless distance parameter Y*. 

This relation is shown on the Fig. 2. 

FIG. 1. Ratio oI’ eddy viscosity to molecular viscosity vTp, 
and dimensionless velocity uiu* as function of the dimension- 

less distance from the wall, Y*. 
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FIG. 2. Ratio of eddy viscosity to molecular viscosity Y~,Y,, 
and integral W as function of the dimensionless velocity 

Y* > 0. (2) U/U* 
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Since the relation V&J,, depends in this case on 
the dimensionless velocity u/u* to be found, the 
differential equation (1) of motion becomes non- 
linear. This apparent difficulty of the nonlinearity 
can be avoided by introducing a new function 
determined by means of the integral transforma- 
tion. 

After introducing the integral transformation 

the equation (1) may be rewritten in the form: 

1 8P div (grad w) = __ -. 
vop14*~ az 

The function W could be evaluated by 
numerical or graphical integration according 
to the equation (3). The function W(u/u*) is 
shown on the Fig. 2. The equation (4) has a form 
identical with the equation for laminar flow. 

The solution of this equation is known and 
frequently cited in the literature of the subject. 

To demonstrate the method a numerical 
example is presented. 

3. NUMERICAL EXAMPLE 

As an example we will determine the velocity 
field for a duct the cross-section of which has 
the shape of a narrow isosceles triangle with an 
apex angle of cp = 115 degrees, corresponding 
to a side ratio 5 : 1. This case has been investi- 
gated experimentally in (3). 

Introducing the dimensionless parameter 

1 8P W 
-.,=a and -_=W 
vopu* dz a 

the equation (4) then can be rewritten as : 

div (grad w) = - 1. (5) 

The boundary condition for the W are : 

W = 0 on the contour. 

Approximate solution of equation (5) for 

triangle determined by straight lines : y = f kx, 

x = h is:* 

w = (k2.u2 - y2). 1 _ J )‘I 
2(1 - k2) [ 01 h 

‘t6) 

where 

V 1= 

-4 + J[6 + (10/k2)] 

2 

The value taken for tg (p/2 = k in this case is : 

tg ; = k = 01007 

k2 = W1014. 1 
(7) 

Introducing the value from (7) equation (6) 
becomes : 

w = 0~506(0~01014 x2 - y2) 

x [I -(;;>“‘“I. (8) 

To compare the experimental velocity profile 
with the theoretical expression, equation (8) was 
used to calculate, for the velocity profiles 
measured on the straight lines y = 0, the ratio 
W/W,,, as a function of x/h. 

The equation then obtained can be written 
in the form : 

W _=w= I.545($ [; -(;)*3’J (9) 
W Wm.?, max 

thereby 

and 

Rn,X = MO333 h2 

X 

0 
7 
h 

= 0.86. 
wn-.,. 

According to the definition the value of the 
dimensionless parameter a is given by: 

1 dP a=- - 
v#4* . dz’ 

w 

* Equation (5) is solved by Kantorovich method in [6]. 

B 
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It is easy to derive that : 

a = F(Re,f; d). (11) 

According to a force balance over the flow 
section the pressure gradient is related to the 
friction factor by : 

(1-a 

The shear stress T,,, is related to the bulk velocity 
by the relation : 

Tw = f . f . p . Id,‘. (13) 

Besides, the friction velocity a* is defined by: 

The equivalent hydraulic diameter d associated 
with a triangle is given by the expression : 

2h . sin cp 

d = (1 + sin cp) 
= J(4h2 . WO8275). (15) 

The above equations can be substituted in 
equation (10). The equation then obtained can 
be written in the form : 

1 %p 
c(-- __= 

2. (J2f). Re 

v&4* . iiz d2 . 
(16) 

From the measurement in the test channel it 
appeared that the ratio f ifB lies below unity : 

fi’f- = 085 

where by fs is given with sufficient accuracy by 
the Blasius expression : 

fs = 0079 Re-0’25. (17) 

In view of the above equations and with taking 
into account the relation (15) we have : 

69 800 

C(=hZ. 
(18) 

The value taken for the Re number in this case 
was: Re = 104. 

The calculated value of W,,, is : 

W max = 0.00333 h2u = 232. (19) 

Table 1. 

Y 
No. 

i 

1 0uJ 0000 04Joo owe 
2 0.1 0.01545 0.184 019 
3 0.2 0~0618 054 0.49 
4 0.4 0.247 0.81 0.75 
5 0.6 0,550 0.93 0.9 1 
6 08 0,938 0.995 0.99 
7 0.9 @955 0.996 0.99 
8 lQ0 0.000 0.000 wJu0 

Table 1 gives the computation results of the 
velocity fields for various ratio x/h and confronts 
the computation results with the experimental 
data. The confrontation is presented also in 
Fig. 3. The. agreement between the computed 
velocity field and the experimental data are 
found to be quite satisfactory. 

O- 

8.6 - 

0.2 0,4 O-6 0.8 0 

x/h 

FIG. 3. Velocity distribution of turbulent flow u/u,,, in a 
triangle for various x/h ratio for Re = 104. 

CONCLUSION 

As a result of application of some integral 
transformation the problem of the turbulent 
flow has been reduced to the solution of equa- 
tion of the type describing the laminar flow. 
The kind of approach utilized here essentially 
facilitates the consideration of turbulent flows 
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and permits the use of well-known solutions, 
widely referred to in the literature. 

In our calculations the experimental results 
of Reichardt and Nikuradse have been used. 
On this basis the analytical expression of rather 
general nature, describing the relation between 
the ratio v,jv, and the dimensionless velocity 
u/u*, has been constructed. This relation may be 
applied to the analysis of turbulent flow through 
ducts of complex geometry. 
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DETERMINATION DUN CHAMP TURBULENT DE VITESSE DANS UNE CONDUITE 

RECTILIGNE A SECTION DROITE NON CIRCULAIRE 

R&urn-n a effectd l’analyse de l’equation de mouvement pour le cas de l’tcoulement d’un liquide 
dans un canal de section non-circulaire. Grace a l’utilisation d’une transformation integrale particulibre 
on a ramene cette. equation a la forme de l’equation differentielle, decrivant l’ecoulement laminaire dont 
la solution est connue. Les resultats obtenus permettent esperer, que la dbpendance de quantite vrjv, en 
fonction de a/a* est de caracttre general. 

Pour illustrer la methode, on a calcule un exemple numtrique. On a constatt une bonne concordance 
des calculs avec les don&es experimentales. 

BESTIMMUNG DES TURBULENTEN GESCHWINDIGKEITSFELDES IN GERADLINIGEN 

KANALEN MIT NICHT-KREISFORMIGEM QUERSCHNITT 

Zusannnenfassnng-Es wurde eine Analyse der lmpulsgleichung fur die turbulente Stromung die in der 
geradlinigen Leitung von nicht kreisfdrmigem Querschnitt stattlindet, durchgefiihrt. Die erwlhnte 
Gleichyng wurde, durch Verwendung von spezieller Integraltransformation,auf die Differentialgleichung 
der laminaren Stromung zurtlckgefiihrt. Die Losungen solcher Differentialgleichung sind sogar fiir 
komplizierte Geometrie des Querschnittes meistens bekannt. 

Erhaltene Ergebnisse lassen vermuten, dass die funktionelle Abhlngigkeit der Grijsse vr/vO von u/a* 
einen recht allgemeinen Charakter hat und ist von der Geometrie des Querschnittes unabhangig. Urn den 
Rechnungsgang zu erllutern, wurde ein numerisches Beispiel durchgefiihrt. Die numerische Ergebnisse 
wurden mit denen eines Versuches verglichen. 

Das analytische Ergebniss stimmt mit dem Versuchsergebniss weitgehend i&rein. 

OIIPEAEJIEHHE IIPO@,BJIR CHOPOCTH IIPH TYPBYJIEHTHOM 
TE’CIEHHH B HAHAJIAX HEKPYPJIOIO CE=IEHHtI 

Aaacrramrn-IIposeAen arrarrria ypaBHeHHR ABHHreHHH firHi Typ6yJmHTHOrO TeYeHHH H(HRKOCTH 
B KaHane neKpyrnor0 ce4eHHH. HaHHoe ypaBHeHHe c nomombro CneHUanbHOrO HHTerpanbKoro 
npeO6pa3OBaHHH CBOAHTCH K mU#%‘peHHHaBbHOMy ypaBHeHHt0, OnHCbrBammeMy JmMHHapHOe 
TeHeHHe. PemeHae Hnfr Tartor porta ypannemifr ri3necrno n nnreparype. IIonyseunbre 
pe3yHbTLlTbI nO~BOJHHOT npeAnOnOH(HTb, ‘IT0 $lyHKHHOHaJIbHaB 3aBHCAMOCTb McHtHy Bt?JIH’IH- 
HaMU V&o H U/U* IIMf?IOT 06mnti BHA. 

AJIH nnnrocrpatmri np~iao@TCfi BsicneHBnti npnMep. 06napyHtenO xoporee cosnaAenue 
IKXiyHbTaTOB paC’K!Ta C ZiKCnepAMeHTaJrbHbIMU AaHHblMH. 


